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Free vibrations of mechanical systems are investigated by Bubnov’s method, using coordinate functions that do not satisfy all 
the boundary conditions of the problem. To eliminate discrepancies in the boundary conditions, correction functions are introduced, 
orthogonal to all coordinate functions involved in the analysis of the natural vibrations of mechanical systems. This method of 
constructing correction functions reveals the existence of differences between nearly equal numbers in the frequency equation 
and in the expressions for the vibrational modes. Moreover, for a given number N of coordinate functions, the method guarantees 
increased precision in computing all the natural frequencies of the mechanical system up to and including the (N + 1)th partial 
frequency as the number of terms of the power series in the frequency parameter representing the correction functions is increased. 
In the limit, as the number of terms of the power series tends to infinity, one is assured of obtaining exact values of the frequencies 
and vibrational modes in the indicated frequency range. 0 2004 Elsevier Ltd. All rights reserved. 

The sources and development of Bubnov’s method were investigated in detail in a book by E. I. Grikolyuk 
[ 11. The coordinate functions in Bubnov’s method must satisfy all the boundary conditions of the boundary- 
value problem, and the selection of such a complete system of functions often becomes complicated. An 
effective way of overcoming this difficulty, by introducing correction functions, was considered in [2,3]. 

Below, in the context of analysing the natural vibrations of mechanical systems, it is proposed, unlike 
in [2, 31, to orthogonalize the correction functions, each of which is represented by a power series in 
the frequency parameter, with respect to all coordinate functions involved in the computation. It is shown 
that the number of coordinate functions involved sets an upper limit to the frequency range of the 
mechanical system that can be investigated. The correction functions eliminate discrepancies in the 
boundary conditions and increase the precision with which the natural frequencies and vibrational modes 
can be calculated in the frequency range considered. In the limit, as the number of terms of the power 
series representing the correction functions tends to infinity, one is assured of obtaining exact values 
of the frequencies and modes in the system only in that frequency range. When synthesizing the 
dynamical characteristics of component structures, orthogonalization of the correction functions with 
respect to the coordinate functions involved in the computations has made it possible to eliminate the 
“breakdown” of the solution in its computer implementation [4-61. 

1. CORRECTION FUNCTIONS IN PROBLEMS OF DYNAMICS 

Consider the homogeneous boundary-value problem of determining the natural frequencies and modes 
of vibration of a mechanical system, written in the form 

L(u) - hu = 0 
M,(u(a)) = 0, i = 1,2, . . . . n; M,(u(b)) = 0, i = n+ l,n+2, . . . . 2n (1.1) 

where L is the operator of the boundary-value problem (of order 2n), h is the frequency parameter, 
U(X) is the unknown functions, Mi are the operators of the boundary conditions, and [a, b] is the interval 
in which the boundary-value problem is defined. 

Suppose that, in the interval [a, b], one has a system of coordinate functions {(ok} which do not satisfy 
(or do not satisfy all) the boundary conditions of problem (1.1). 
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Following the approach described in [3], we will seek the general solution (not a particular solution, 
as in the classical Bubnov method) of boundary-value problem (1.1) in the form 

2n ,~ 

u = ]~(x)+y~(x) ;  ]~(x) = ]~ Cifi(x ), ~,~(x) = y~ AkqJk(x ) (1.2) 
f q~ f iffil cO k = l  

where )~ (i = 1, 2 . . . . .  2n) are correction functions, introduced in order to eliminate discrepancies in 
the boundary conditions. 

The constants Ci in formula (1.2) are determined from the boundary conditions of the problem, while 
the coefficients A~ are determined by Bubnov's procedure: solution (1.2) is substituted into the initial 
equation (1.1), which is then orthogonalized in turn in the interval [a, b] with respect to each of the 
functions q0k (k = 1, 2, . . . ,  N) involved in the computation. 

Thus, the constants Ci are determined from the boundary conditions of the problem: 

( x=a  for j = 1 , 2  . . . . .  n; x = b  for j - - n + l , n + 2  ..... 2n) 

The equations for calculating the coefficients A~ have the form 

/C f[L Z ( x ) +  ~, Ajcpj(x) -~, Z ( x )  
a L \ f  j = l  \ f  

+ ~Aj~j(x)l](Pk(x)dx = 0 
j = l  

(1.4) 

In practical calculations the number of equations (1.4) is finite: k = 1, 2 . . . .  , N, and the solution 
obtained is therefore approximate. Equating the determinant of the homogeneous system of algebraic 
equations to zero, we obtain an equation for the natural frequencies of the mechanical system under 
consideration. The vibrational modes will be uniquely defined by the values of the coefficients Ci and 
A~ if an additional normalization condition is introduced. 

If the coordinate functions satisfy all the boundary conditions, it follows from Eqs (1.3) that all the 
Ci vanish. In that case, Eqs (1.4) become the classical system of equations of Bubnov's method, which 
yields approximate values for the N required lowest frequencies and modes. The differences between 
the computed values of the frequencies and modes relative to the exact solution increase as the harmonic 
number of the vibrations increases. 

If the coordinate functions are solutions of a boundary-value problem that differs from (1.1) only in 
its boundary conditions, then each function q0 k has its own partial frequency oh- If such coordinate 
functions are unknown, they and the corresponding partial frequencies may be determined approxi- 
mately by Bubnov's method from system (1.4) with Ci = 0 (i = 1, 2, . . . ,  2n). In other words, this case 
may always be realized by changing to new coordinate functions, that is, by a linear transformation in 
Eqs (1.2)-(1.4). 

When that is done, it turns out that the coefficients Ak in Eqs (1.4) are not interconnected. If none 
of the unknown frequencies coincides with the partial frequencies, Eqs (1.4) can be used to eliminate 
A~ from Eqs (1.3) and (1.2). If the coordinate functions fail to satisfy only a few boundary conditions 
of the initial problem, say, one of them, then the number of correction functions equals the number of 
unsatisfied boundary conditions. Sometimes this method enables one to construct an exact series solution 
of quite complicated mechanical systems [3]. 

Following the approach described in [3], the correction functions)~(x) are represented as power series 
in the frequency parameter 

f i(x) = foi(X) + ~,f li(X) + ... + ~,P f pi(x) (1.5) 

The functions foi(X) ,  a l i ( X ) ,  . . .  , fpi(X) are determined from a recurrence sequence of static boundary- 
value problems, of the form 

N 

L(foi) = ZBIIpt(x)' MY (foi) = 0, j = 1,2 .. . . .  2n; j~: i  
l = l  
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b 

Mi(foi)  = 1; Ifoiq)l(X)dx = O, l = 1,2 . . . . .  N 
a 

L ( f k i )  = f ( k - 1 ) i ,  Mj(fki)  = O, j = 1,2 .. . . .  2n; k = 1,2 .. . . .  p 

(1.6) 

It will be recalled that in the boundary conditions the argument of the functions takes a specific value 
(x = a orx = b). 

The correction functions in Eqs (1.6) are orthogonal to all coordinate functions involved in the 
computation, but in [3] the correction functions were orthogonalized only to coordinate functions with 
zero partial frequencies, which describe the displacement of the mechanical system as a rigid body. 

The first functions foi in formulae (1.5) eliminate discrepancies in the boundary conditions and, 
together with the subsequent functions fki (k = 1, 2, . . . ,  p),  accelerate the convergence of the series 
with respect to the coordinate functions in the solution obtained. 

Suppose the coordinate functions {q~k} are solutions of a boundary-value problem of the form (1.1) 
(the basic problem) with one boundary condition changed. To fix our ideas, let us assume that the 
unsatisfied boundary condition has the form 

Mi[u(b)] = 0 (1.7) 

In that case [3], it will suffice to introduce a single correction function f(x). Then the solution of 
problem (1.1) may be written in the form 

u = Cf (x )  + E Ak~k(x) (1.8) 
k = l  

Only one equation remains in system (1.3) 

C M i ( f ( b ) )  + E AkMi[(Pk(b)] = 0 
k = l  

(1.9) 

Equations (1.4) become 

ak(~ k-~ . )A  k - C a k B  k = O, k = 1 ,2  . . . . .  N 

ak(ak-)~)Ak-Ct '~"~P+lMi[~k(b)] = O, k = N + I , N  + 2 . . . .  
(1.10) 

If the unknown frequencies are not identical with any of the partial frequencies ~k, Eqs (1.10) may 
be used to eliminateAk from Eqs (1.8) and (1.9) 

N BkMi[(Pk(b)] 
C Mi( f i (b) )  + E (~k -- ~" 

k = l  

~ P÷ -- 'M~tq~k(b)] 1 +Z,( @ o 

(1.11) 

The equation for computing the natural frequencies of the system is obtained by equating the 
bracketed expression in the second equation of (1.11) to zero. 

Each of the N first coordinate functions is represented in Eqs (1.11) by terms proportional to 
(~k - ~,)-1, which is independent of the number of terms of the power series in the correction function 
(1.5). 

I f  c~ = O, the corresponding term cannot be represented by any power series, and therefore it is 
necessary to orthogonalize the correction function to the coordinate functions describing the motion 
of the basic system (in the terminology of [3]) as a rigid body. 

But if Ck ~ 0, we have: 
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for~, < 

for~, > 

= "1+1 -- Z ~ kOkj Z "l+l 
Gk--~L l=O0 k t=oOk l=p+lGk 

x' (_x?+l 1 
I = 0 Ok kOkJ Ok -- ~ 

(1.12) 

,,* 1 p 1 ~ 1 
1 Ok _ Ok (~_~_k) p + 1 Ok _ 

Ok--~, r'----Z'~'~++l _~0 ~'7~+~]L] X l~'+l 1=0 A' I- I=p+ 

p l p+l 
Ok ( . ~ )  1 

- -  - -  Z--T~+I + 
t=0 A, o k -  ~, 

(1.13) 

Note that for any finite values o f p  in formulae (1.12) and (1.13), if ~, ;~ ok, we have the following 
relations 

~k -~'1 zP ~1 (~k)P+l lok___~. _~0 O ~/~_. - (~)p+l lOk.. ~" - _ _ - - - 7 ~  + = -  ---T-~+l + (1 .14)  
I=oOk 1- 

Asp is increased, provided the restrictions imposed on the value of ~, are satisfied, the second terms 
in (1.12) and (1.13) decrease in absolute value, and, beginning at some value of p, they become negligibly 
small compared with the first terms; in the limit as p --9 oo the second terms tend to zero. 

But if ~, exceeds the limits stipulated for each equation, the infinite power series in formulae (1.12) 
and (1.13) will diverge, and taking the sum of the firstp terms of the divergent series (as in (1.14)) leads 
to the appearance of differences of two nearly equal numbers. Neglecting the second terms in (1.14) 
at "irregular" values of ~, leads to a crude error: both terms in the sum are similar in absolute value 
but of opposite sign. The larger p (and thereby the farther )~ is from the boundaries of the "regular" 
domain), the closer the absolute values of the two terms. Naturally, under these conditions, it is 
impossible to take the limit as p ~ ~ .  In real computations, however, "breakdown" of the solution 
may occur at a finite value ofp.  

Thus, the process proposed here, to orthogonalize the correction functions with respect to the N first 
coordinate functions, has the result that in the frequency range 0 < ~, < OU+l the power series (1.5) 
converges as p --9 oo to a value characterizing the "contribution" to the solution of the remaining 
coordinate functions q~k (k = N + 1, N + 2 . . . .  ), so that the last (third) terms in brackets in formulae 
(1.11) disappear. In computer calculations, the possibility of neglecting these terms when computing 
the lower frequencies and vibrational modes of mechanical systems is implemented at a finite fairly 
small value of the degreep of the polynomial (this value ofp  decreases as the number N of coordinate 
functions involved in the calculation increases). 

2. THE L O N G I T U D I N A L  V I B R A T I O N S  OF A ROD 

Let us consider the problem of computing the natural frequencies and modes of longitudinal vibrations 
of a homogeneous cantilever rod, which are determined by solving the following boundary-value problem 

d2u+~.2u = O, u(O)-  du(1) = 0 (o t=/ ,~ .2-m°)212~ (2.1) 
dot 2 dot E F  ) 

where l is the length of the rod, m is its mass per unit length, E F  is the tensile and compressive stiffness, 
co is the angular velocity of the vibrations, and x is the longitudinal coordinate of sections of the rod 
measured from the lower clamped end. 

Problem (2.1) has an exact solution which is also obtained by Bubnov's method if one takes the 
coordinate functions to be {sin(k - 1/2)x¢¢} (k = 1, 2 . . . . .  ~o) 

~'k = ( k - l / 2 ) x ;  u k = s i n ( k - l / 2 ) ~ ,  k = 1,2 . . . .  (2.2) 

If one takes the complete system of coordinate functions {q~k} = {sinkx~} (k = 1, 2, ...) (the 
vibrational modes of a rod with attached ends) which fail to satisfy only one boundary condition, a single 
correction function is needed. The solution of the problem may be represented in the form 

n 1 
u = C ( f o ( ~ ) + ~ , 2 f l ( o t ) + . . . + ~ , 2 t f t ( o t ) ) +  ~ A k s i n k g o t +  ~ Aksinkrcot (2.3) 

k=l k=nj+l 
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The functions f0(cz), f l (~)  . . . . .  )~(~) are solutions of the sequence of static boundary-value problems 

n I 1 

d2f° = - ~ Bksinkg~; f0(0) = 0; f0(1) = 1" Ifosink~oLdo~ = O, k = 1, 2, n l 
do2 . . . . .  I, = l o (2.4) 
d 2 f j  _ 
d ~  2 - f j - l ;  f j ( O )  = O, f j ( 1 )  = O, j = 1 ,2  . . . . .  t 

The first two terms of the correction function, determined from boundary-value problems (2.4), take 
the form 

{ k__~ = ( ~  "~1 (-1)'sinker'] "' (-1)ksinkg0~), 2 2 a (2.5) 
f0  - 2n t + 1 2 + kg ) f l  2n 1 + 1 + (krQ 3 ) 

1 = 

If we confine our attention to the single term f0 in the correction function, the solution of the initial 
problem may be written in the form 

{ + (  " '  / ( -1)  sinkrca , u(~) = C l c t + 2 ~  - -  -v 
k =  1 k x  ., 

n I 

2 ~ (-1)kk~sinkna + 
+ 2n I + 1 ~2 _ (k~)2 

=1 

2~, 2 ** (-1)ks._inknot } 

2n 1 + 1 £ k ~ ' ~ -  (k~) 2) 
k = n l + l  

(2.6) 

The frequencies of the vibrations are determined from the equation 

n 1 
2 (k/Q 2 2~, 2 " 1 

1 + 2 n , + 1 ~ 1 £ 2 - 7 - ~ ) 2  +2n  1+'-----~ Z 2 ( } - 0 (2.7) = k =., + l ;V - .k~. 2 

For a two-term approximation of the correction functionj~ + K2fl , the solution of problem (2.1) may 
be written in the form 

{/ ~' (-1)ksink~°~/+ I6 3 ~, (_l)ksink~ct/ 
u(ot) = 2nl+-------~. k=l - " 6 - +  k=l 

?11 *~ 

+2 ~ (-1)kknsink~°~+2k 4 £ (-1)ksink~ct 

+ 

(2.8) 

The corresponding frequency equation is obtained by substituting expression (2.8) into the boundary 
condition at the free end 

, )n  } 
1 (2.9) 

The arbitrary factor C 1 in Eqs (2.6) and (2.8) is completely determined by introducing some 
normalization condition for the vibrational modes. 

In the limiting case when nl = 0 the solutions (2.6), (2.7) and (2.8), (2.9) become the solutions obtained 
in [2]. 

In the interval (0, (nl + 1)rt) the correction series in powers of the frequency parameter converges 
when the number of terms increases without limit. Therefore, given a specific value of nl, the last term 
in Eq. (2.9) may be ignored when the number of terms in the correction series is increased, when one 
is looking for frequencies in the interval (0, (nl + 1)n). 

The first natural frequency of the cantilever rod (~1 = n/2) lies in the convergence domain of the 
correction power series, and therefore, when seeking it, one can disregard all the coordinate functions. 
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Writing the first four terms of the correction series as determined from boundary-value problems (2.4) 
with nl = 0, we have 

3 5 03 7ct ~ 7~ 3 31~ (2.10) 0~ I~ 7 0~5 

f0 =°t, f l - - 6  6 '  f 2 -  120 36 +3"~'  f3 = 504"----O'1 720 2 ~  +15120 

The solution of boundary-value problem (2.1) may be written in the form 

U((3Q = C I 13~ + ~2 _ + )~ 1"~ 36 I- ~--~) 

+ L6(_ 5 ~  + 7 2 0 a 7  5 2160 + 15 120) J 7 ° t - - - ~  3 31a )~ (mode of vibration) (2.11) 

~2 ~4 2)J 
1 3 45 945 = 0 (frequency equation) (2.12) 

The unique positive real root of Eq. (2.12) is ~'1 = 1.732051, taking two terms of the correction series 
into consideration, )~1 = 1.600720, taking three terms, and )~1 = 1.577660, taking four terms; the exact 
root is ~'1 : /~/2. 

Computations of the three lowest modes of vibration of a cantilever rod using Eqs (2.7) and (2.9) 
were carried out on a computer with double precision. Taking one coordinate function into consideration, 
the first natural frequency is determined from Eq. (2.9), correct to three decimal places, but from 
Eq. (2.7) with an error of more than 15%. When ten coordinate functions are taken into consideration, 
Eq. (2.9) yields four correct decimal places for L1 and three for the frequencies )~2 and )~3. The error 
in the three lowest frequencies computed from Eq. (2.7), taking ten coordinate functions into consideration 
is -2%.  When one hundred coordinate functions are taken into consideration one has six or seven 
correct decimal places in the values of the required frequencies from Eq. (2.9) and only two from 
Eq. (2.7). 

Expansion of the exact expression for the mode of vibration with respect to the coordinate functions 
chosen above leads to a rather slowly converging series 

~(-1)kk~sinkg~ 
Ui(OL) = k = l  ~ '~--  ( k g )  2 

(2.13) 

Evaluating the derivative of this expression at the point a = 1, one obtains a diverging series. A finite 
member of terms of that series appear in both equations (2.7) and (2.9). The orthogonalization procedure 
detects the special features of the solution: the presence of small differences (the second term in (2.9)) 
and of poorly converging series (the third term in (2.9)). These features actually appear in a masked 
form in the solutions of [2, 3]. 

3. THE VIBRATIONS OF A ROD ON ELASTIC SUPPORTS 

The natural frequencies and modes of longitudinal vibrations of a rod with elastic supports at intermediate 
sections are determined by solving the following boundary-value problem 

--d2u +~.2u = 0; du(O) _ du(1) _ 0, du a,+o = Cku(O~k), U]ak-Oa*+O = 0 
d~2 d ~  d a  ~ ot k-o 

x ~2 m~212 Ck = Ckl) 
o~ = ?, = EF ' -~J 

(3.1) 

(Ck is the stiffness of the support at the section ~ = ak; the remaining notation is the same as in 
Section 2). 

As a complete system of coordinate functions, we choose the longitudinal vibrational modes of a free 
(unsupported) rod, that is {cpi} = {cosine} (i = 0, 1, 2 . . . . .  oo). Corresponding to these modes are the 
following natural frequencies and reduced masses 
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0 

f 1 tS~ = (i~t) 2, a i = tp~da = ~; i = 0 , 1 , 2  . . . .  

1 

Since the coordinate functions do not satisfy a dynamic condition at the supports, the solution of the 
initial problem may be represented in the form 

N p 

u(a) = E Dkfk(a)+ E a ic°s i~a+ E a*cos i~a  (3.2) 
k=I i = 0  i = p + l  

The correction functions, the number of which is equal to the number of intermediate supports, are 
solutions of the following static boundary-value problems 

d2fk P 
do2 - - E Dkic°sigot 

i=o 

d f k ( -O)  - O, d fk (1  +0)  dfk(ot  ) .k+o ~k+o 
dot dot = 0, = 1, fk(tX)lc, k_0 = 0 (3.3) 

dot  cq - 0 

1 

[ f kcos igo td~  = 0; k = 1,2 . . . . .  N; i = 0 ,1 ,2  . . . . .  p 

0 

The sum of the form 2f=0Dkt in Eqs (3.3) cannot vanish, since the first coordinate function describes 
the longitudinal displacement of a rigid rod and the corresponding natural frequency is zero [2, 3]. 

The solution of boundary-value problem (3.3) may be written in the form 

P 
fk (a )  = f*(ot)  + 2 E cosi~otkc°sigot 

i= I (i/t) 2 

I ~(ot2 2 1 
- + ~k) + otk- g, 0-<iX-< ~ k - 0  (3.4) 

f ~ ( o t ) = [  ~[ot2 2 2 1 
- +11 +otk+~,  ¢tk+0---Ct<-I 

Substituting expression (3.2) into Eq. (3.1) and applying Bubnov's orthogonalization procedure to 
the resulting expression, relative to the coordinate functions, one obtains equations for the unknowns 
A i. The coefficients D~ are evaluated from the dynamic conditions at the supports 

N N 

a o = ~ D  k, ai(~. 2 - ( i n )  a ) = 2 ~ D k c o s i l t ~  k, i = 1,2 . . . . .  p 
k=l k=l 

N COS i~tx k 
A.(~2 _ (i/~)2) = 2~2 Z D k ~  i = p + 1, p + 2, (3.5) 

k = 1 ( i ~ ) 2  . . . .  

Dj = Cj Dkfk(ctk) + Aicosiltot k + A * c o s i g a  k 
~k=l i=l i=p+l 

The condition that the determinant of system (3.5) should vanish yields an equation for computing 
the vibrational frequencies of the rod with intermediate supports. 

When there is one support at the section tz = CXk, Eqs (3.5) become 

D1 Ai(~,2-( ix)  2) = 2 D l c o s i n a  k, i = 1,2 . . . . .  p A 0 = ~2' 

2~, 2 ~ . 
A . (~2_  (i/~)2) = (ig)2OlCOStgotk, i = p + 1, p + 2 . . . .  (3.6) 
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{[ p _ } I+2 L c°s2i = ] + Aic° s ig f~ k  + Z Aic°s igo~k 
Ol =Ck  O l - { X ~ + a k -  5 i=l  (i~)2 J i=0 i=p+l  

If none of the frequencies of the supported rod is a frequency of the unsupported rod, the unknowns 
Ao, Ai, A* are eliminated from the last equation of (3.6) and the following equation is obtained 

-- I 2 1 P 2. 
DI C1 - ak + °tk - ~ + 2 ] ~  cos  lgtx k 

i= 1 (ig)2 

p 2. 
1 ~ cos t l ta  k 

1 " ~ + 2 Z ~ - 5 - -  . .2 
i = 1 ~. - ( t~ )  

. 2. } cos,, ok 1 
+2L 2 ( i~)~z_-_-_i~)2] j -1  = 0 

t I 

(3.7) 

I fp  = 0, this equation implies the frequency equation obtained in [2]. 
The frequency equation for a supported rod follows from the condition that the expression in braces 

in Eq. (3.7) should vanish. If the support is absolutely stiff and is placed at ~k = 0, the frequency equation 
is written in the form 

1 L _ ~ , 2 + l  2 L ~ 2 _ ( i ~ )  2 ~+1(i~)2[~2 (i/t) 2] - ~ + 2 ~2 + 1 + 2~2  1 = 0 (3 .8)  

i= l ( l ~ )  i= 1 iffi -- 

Using the known sums of the series for anyp  in the limit as i ---> ~o, one obtains Eq. (3.8) in a form 
identical with the exact solution 

ctg~. _ 0 ~ cosk = 0 (3.9) 

4. T H E  B E N D I N G  V I B R A T I O N S  OF A BEA M 

The frequencies and modes of bending vibrations of a beam supported at its ends by hinges and at an 
intermediate cross-section on an elastic support are determined by solving the following boundary-value 
problem 

d4w ~.Zw = 0 
d oL 4 

d3w %+0 %+0 d w  ak+° = d2w ak+O = 0 

do~ 3 % - 0  = Cykw(O~k)' W[ak-0 = ~-~ ak-0 dot 2 %-0 

w(0) = w(1) - d2w(0) - d2w(1) - 0 
dot 2 d(~ 2 

X ~2 mO2/4 Cyk = Cykl3~ 

a=?, = EJ ' -'-~) 

(4.1) 

where m, EJ and l are the mass per unit length, the bending stiffness and the length of the beam, w is 
the deflection of the beam, and Cyk is the stiffness per unit length of the support at the section ~ = xk/l. 

Suppose the coordinate functions are the vibrational modes of a beam supported by hinges at its 
ends, which do not satisfy the dynamic condition at the elastic support and are characterized by the 
relations 

2 
aqi = 1/2, ~qi = (i7c) 4, ]]i(~) = sini~a (4.2) 

The solution of boundary-value problem (4.1) is represented in the form 
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n I 

w = C , f +  E A i s i n i n ~  + Z Ai*sin/n°t 
i = 1  i = n l + l  

(4.3) 

A correction function f orthogonal to the first na coordinate functions is a solution of the following 
boundary-value problem 

¢11 

d4f = ~ Btsinin~ 
d o t 4  i = 1 

d3f ak+O ak+O df a,+o d2f a,+O 0 
= - 1 ,  f ] a , - O  = = = 

dot3[=~_o ~ ~,-o dot E ~ - o  

f ( 0 )  = f ( 1 )  = d2f(0)  - d2f(1)  - 0 
dot 2 dot 2 

l 

~ fsininotdot = 0 for i = 1,2, . . . ,n 1 

0 

(4.4) 

The solution of the boundary-value problem (4.4) may be written in the form 

n I . . 
2 ~ / s m t n o t k  otk(ot*- 1) ) 

f = f * +  ~ -~  ~ 3in cosi~otk sinir~ot 
i= 1 {,In) 

I otk(ot k -  1)(otk-2 ) (otk- 1) 3 
- ~  - " ~ - ' - - - - - o t  - - -6 - - -o t  ' 0-<ot-<ot*-0 

f *  = / ott ,(ott ,-1)(otk+l).  -- otk- ~ tot-- 1)---~ - (o t -  1)3' ~ k + 0 < o t <  1 

(4.5) 

A system of algebraic equations inAi is obtained by substituting expressions (4.3) and (4.5) into the 
first equation of (4.1) and orthogonalizing the resulting expression with respect to the coordinate 
functions {vii} = {sininc~} (i = 1, 2 . . . .  , ~ )  

ai[(in)4-~, 2] + 2Cl[s in inotk-  otk(otk- 1)(in) 3 ] 3 c°sin~k = 0, i = 1,2 . . . . .  n l 

~2,., [-sini~otk ~k(otk- 1) (4.6) 
A , [ ( i n ) 4 _  ~2] + 2~ t~l / ~ cosinotk] = 0, i = n I + 1, n I + 2, 

t_ (in) 3(i•) j "'" 

The coefficient Ca is determined from the boundary condition at the support 

I (  n C 1 = Cyk C l  ~ (  2__ 1) -- '~ (smlnot k - 1) + 2 2-~ ~. ~ otk(ak COS inotk 
3 i= I (in) 3in 

+ ~ Aisininotk + Ai* sin/ha t 
i =  1 i = n l + l  

(4.7) 

Equations (4.6) and (4.7) form a system of homogeneous algebraic equations for the natural frequencies 
and vibrational modes. 

From the condition for the determinant of this system to be zero we obtain the frequency equation 
for a beam with intermediate support. 

The solution in the form (4.6), (4.7) enables us to compute all the frequencies and vibrational modes 
for any position of the elastic support (including the frequencies and modes with the node at the section 
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where the intermediate support is placed). To determine the frequencies and vibrational modes of the 
beam with intermediate support that are not identical with any of the frequencies and modes of an 
unsupported beam, the frequency equation may be transformed to a more transparent form, eliminating 
the eoordinatesAi andA* with the help of Eqs (4.6) from expressions (4.3) and (4.7). 

Let us put 

sininott t~k(~ k -  1) 
Z i ( l ~ k )  : (irQ 4 3i~ c ° s i ~ k  

The frequency equation can then be written in the form 

ey~ ~.--, ( l~)  . . . .  1 - - 1)2 + 2 ~ )~i(ak)sinix~k - Z 2., . . . 4  ~2 ~ita~)smtg~k - 
3 

i =  1 i =  l [ l g )  - - A ,  

-2~'2 Z 1 " " = 0  
i =  n I + 1 ( i /~ )  4 -- ~ ' 2 ~ i ( C ~ k ) S l n t ~ t ~ k  

(4.8) 

The vibrational modes are computed from the formulae 

(ig) 2 1 
w = C 1 f - 2  Z 4 2 ~i(O~k)sini~OL-2~" Z 4 2 Zi(~k)sini~t~ 

i= 1 ( i g )  - ~ "  i=nl + l ( i g )  -~" J 
(4.9) 

The small difference (the singly underlined term in (4.8)) and the segment of a poorly convergent 
series (the doubly underlined term in (4.8)) are the realities of the solution, which have become obvious 
when using the procedure for orthogonalizing the correction functions with respect to the coordinate 
functions. 

In conclusion, one should note that differences of nearly equal numbers and functions may be replaced 
by infinite series. For example, in Eq. (2.9) 

n I 
1 1 1 

- 2 -  
k -- 1 ( k g )  k = n, + 1 ( k x )  2 

(4.10) 
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